
DilC r ILE COPY

00
Final Report for

OFFICE OF NAVAL RESEARCH DTIC
(N LECTE

DEC 2 9IM

on

Equipment Grant #N00014-87-G-0260

SPRINGNET: A Network of Multiprocessors for Hard Real-Time

by

John A. Stankovic

and

Krithi Ramamritham

AvPpOv*d in publi ree ea October 1988
DitribUtiom Unlimited I

1t .?i 090

1. Equipment Purchased

Item Manufacturer Cost

1 Sys1132NY021 Motorola $16,875.00
(Model 1132 Computer System)

2 MVME136A Motorola 8,992.50
(68020 based CPU board)

1 M68NNTBV68M Unix 5.3 Motorola 1,258.00
1 M68NNTBVNEM Motorola 1,085.00

(Network Extension (RFS))
1 MVME330-2-k-5 Motorola 2,100.00

(Ethernet Lan Controller, 68010 based)
10 IC (M27128A-2F1) Jameco Electronics 62.50

6 IC Jameco Electronics 80.94
6 IC (AMZ732A-2DC) Jameco Electronics 25.50

10 IC EPROMs Jameco Electronics 134.90
Total $30,614.34

Changes from the original request include:

9 buying only two processor boards instead of four because of an increase in price,

* not buying the memory boards because memory is now included on the processor
board, and

* purchasing IC chips. These chips were needed in order for us to copy one of the pro-
cessor board chips called "BUG" that provides monitoring and board initialization.
This was a minor expense totaling only $303.84.

2. Use of Equipment

The Spring Kernel is a research oriented kernel that contains a new paradigm for real-
time operating systems. Simulations have shown the efficacy of its ideas. Our research

includes implementing the Spring Kernel on a hardware testbed to validate the simulations
and to address the myriad of issues typically glossed over in a simulation. This report briefly
indicates the status of the hardware, the testbed development and planned research.

By combining this ONR equipment money with money from NSF and State matching
funds, we now have in place 3 nodes of a distributed system and a total of 7 processors. We
also have a network bridge, a local ethernet, and a separate development environment of

3 microVaxes. The separate development environment enables us to isolate the SpringNet
testbed when testing. Recently, we were awarded a new NSF equipment grant and plan
further hardware expansion of the network. This will involve adding 2 more nodes and 10-
14 processors, resulting in a 5-node distributed system and approximately 20 processors.
We have also been working with Ready Systems in obtaining source code for VRTX and
RTSCOPE, two of their products. We will use this software to perform rapid prototyping.

In parallel with studying, purchasing, waiting, implementing and debugging the hard-
ware testbed, siginifcant additional design has been performed on the Spring Kernel. Most
importantly, multiprocessor issues have been further developed and scheduling algorithm
optimizations have been designed. Note that constructing a hardware testbed from new
and state-of-the-art components is not straightforward. For example, we were delayed by
at least 3 major errors found in (1) the firmware on DEC bridges, (2) the firmware on the
ethernet boards, and (3) in the firmware of the board monitor of the 68020. Finally, actual
development and implementation of the first phase of the Spring Kernel, the research to
be performed on the testbed, is now underway.

The Spring project has been very active in multiple areas of real-time computing. We
have developed significant results in many aspects of real-time scheduling, in real-time op-
erating system design, in real-time transactions, and in time constrained communication
protocols. We have also made progress in implementing a software (simulation) testbed,
in developing a hardware operating system kernel testbed called SpringNet, and in imple-
menting real-time transactions on a hardware testbed called CA RAT. We have also begun
a substantial research effort concerning dependable real-time systems. In the following
sections we provide a brief overview of the status and plans for the Spring project as a
whole. .

3. Current Work

3.1 Scheduling and a Software Testbed

Good scheduling algorithms form an essential component of operating systems under-
lying time-critical applications. Most tasks in time-critical applications have timing con-
straints such as deadlines or have a need for periodic execution. In addition, tasks typically
have criticalness (level of importance), resources requirements, precedence constraints, an(
placement or affinity constraints.

One of the key notions of our scheme is the notion of guarantee. Our scheduling algo-
rithm is designed so that as soon as a task arrives, the algorithm attempts to guarantee the
task. The guarantee means that barring failures and the arrival of higher criticalness tasks,
this task will execute by its deadline, and that all previously guaranteed tasks with equal
or higher criticalness will also still meet their deadlines. This notion of guarantee under-
lies our approach to dynamic scheduling and distinguishes our work from other scheduling

schemes. It is also one of the major ingredients for developing flexible, maintainable,
predictable, and reliable real-time systems - our major goal.

We began our explorations into specific scheduling algorithms by developing algorithms
for scheduling simple tasks and then progressively extended our algorithms to deal with
tasks having more complex structures and requirements. Following this approach we have
developed a number of variants of our scheduling algorithms, the differences between the
variants arising from the factors they take into account. In the process we have developed a
software simulation testbed to evaluate these various algorithms. The testbed is continually
being improved to include greater functionality and greater modularity. A goal that we
have is to make the testbed suitable for distribution to other researchers in real-time
systems. The software and hardware testbeds will be coordinated so that they can validate
each other.

In the basic version of our scheduling algorithm, only timing constraints, i.e., tasks'
computation times and deadlines were taken into account [5]. We considered both peri-
odic tasks and nonperiodic tasks. After evaluating this algorithm [10] [11], we extended
it to handle, among other things, resource requirements of tasks. This is a significant
accomplishment because handling resources is a complicated problem ignored by most
researchers. Our work as described in [21] presents a non-preemptive algorithm for guar-
anteeing tasks that have deadlines and need resources in exclusive mode. In [24], we
consider the situation where resources can be used in both shared as well as exclusive
modes. Preemptive scheduling on a node is the subject of [22]. Extensions to the scheme
for cooperation among nodes to explicitly handle the presence of resources are discussed
in [18], [6], and [19].

In parallel with the extensions involving resource constraints, we considered extensions
to the basic algorithm to include precedence constraints aniong tasks. In our approach [3,4],
a task consisting of subtasks related by precedence constraints is scheduled in an atomic
fashion. We assume that the computation costs of subtasks as well as the communication
costs between subtasks are known when a task arrives at a node. Nodes attempt, in
parallel, to schedule subtasks within the constraints imposed by precedence relationships;
thus, once guaranteed, subtasks can be executed in parallel at different nodes. [4] reports
on evaluation of this scheduling strategy as well as its efficacy in different situations.

We have also evaluated two algorithms which integrate both deadline constraints and
criticalness factors in making sceduling decisions [1,2]. Any realistic scheduling algorithm
must consider the importance of the tasks along with their timing constraints.

New simulations have also been performed to study the value of our algorithms with
two distinct types of multiprocessor architectures 19]. These results have affected the design
of the multiprocessor nodes of SpringNet - our distributed systems testbed. We have also
worked out many optimizations for our basic algorithms and have begun testing them on
the software testbed. The most effective of these will be implemented in the Spring kernel.

In summary, our work on scheduling continues, as we seek integrated solutions that take

into account the complex characteristics of tasks in time-critical systems and the nature
of resources that these tasks require.

3.2 Operating System Support and a Hardware Testbed

Next generation hard real-time systems require greater flexibility and predictability
than is commonly found in today's systems. These future systems include the space sta-
tion, integrated vision/robotics/AI systems, collections of humans/robots coordinating to
achieve common objectives (usually in hazardous environments such as undersea explo-
ration or chemical plants), and various command and control applications. The Spring
kernel [14] is a research oriented kernel, based on a new OS paradigm that is designed to
form the basis of a flexible, hard real-time operating system for such applications. Our
unique scheduling approach provides for an on-line, dynamic guarantee of deadlines for
essential tasks. Essential tasks have deadlines and are important for the operation of
the system, but they do not cause catastrophies if their deadlines are missed. Note that
critical tasks that do cause catastropies are treated (guaranteed) separately (primarily by
preallocating resources). Our dynamic approach results in many benefits which have been
detailed in our various papers. The main contributions in our approach are the scheduling
algorithms themselves, the design of the kernel that enables predictability of execution
time, and the synergism between the scheduling algorithm and the kernel design. The
Spring kernel is being implemented on a network of multiprocessors (68020 based) called
SpringNet. The hardware consisting of a 3 node system (and a total of 7 processors) is
now in place.

3.3 Real-Time Transactions and CARAT

We have developed an integrated approach for real-time transactions based on locking.
By an integrated approach we mean that we consider the value of competing transactions
and their deadlines in the concurrency control protocol, in the deadlock resolution scheme,
(we have both deadlock detection and deadlock prevention algorithms), in the CPU prior-
itv. in the recovery strategy, and in I/O scheduling. All this has been implemented on the

'. IM..\T test heuI. This testbed is a completely functioning disi rilmited d)nhnse t,-$ he
consisting of 5 microVaxes. (None of this equipment was supported by ONR.) We are
currently in the process of obtaining performance data for these new real-time protocols. A
We have also developed some ideas on how to use optimistic concurrency control rather
than locking in supporting real-time transactions. This has not yet been implemented.
This section was included in this report only for completeness and was not supported by
ONR.

3.4 Communication Protocols

Distributed real-time systems will have multiple, distributed tasks cooperating to
achieve their goals. An important issue in having such tasks satisfy their timing con-
straints is the ability to deliver messages on-time. Such message transmissions must be
integrated with scheduling. This is one of the major open problem areas for distributed,
real-time systems referred to as the end-to-end problem. For example, process A might
want to communicate with process B which is physically remote. All the steps involved
in this communication, namely running process A, executing the send message primitive,
invoking the OS, physically transferring the message, receiving the message, invoking the
receiving task, processing the message, and replying must be accomplished within a dead-
line. This requires an integrated scheduling and resource allocation policy.

There are at least two broad ways of dealing with scheduling in the presence of mis-
sage delays. The first is based on utilizing information about the maximum delay that
a message will encounter [8]. Thus, if the nodes in a distributed time-critical system are
connected by a local area network and the channel access protocol is designed to guarantee
message delivery within bounded time then communicating tasks can be scheduled assum-
ing bounded message delivery delays. The second method to deal with scheduling tasks
in the presence of message delays is to compute a deadline for each message delivery from
the deadline requirements of the tasks and then employ a comnmunication protocol that
transmits messages so that they are delivered before their deadlines. We have developed
and evaluated two new classes of protocols termed virtual time CSAJA protocols [20], [23]
and time constrained window protocols [24]. It still remains to better integrate these new
protocols with the scheduling algorithm.

4. Planned Work

Even though we believe that we have made a number of substantial contributions in
the area of scheduling in time-critical systems, a number of problems still remain. These
include:

" Developing integrated scheduling schemes for nonperiodic tasks which have dead-
lines, resource requirements, criticalness, precedence constraints, and placement con-
straints.

" Scheduling such complex nonperiodic tasks in the presence of complex periodic tasks.

" Coping with resources other than those on individual nodes, in particular, the com-
munication subnet.

" Scheduling tasks with precedence constraints on multiple nodes; in an end-to-end
scheduling scheme, the scheduling of these tasks will have to be done in conjunction
with the scheduling of messages along the communication subnet.

* Stragegies for scheduling tasks with a wide spectrum of timing constraints, i.e., where,
tasks have a large range of deadlines.

* Scheduling schemes for soft real-time tasks coexisting with hard real-time tasks.

We plan to study each of these scheduling problems. We also plan to complete the
implementation of the Spring kernel and then test the various scheduling algorithms in the
SpringNet environment. For real-time transactions we plan to evaluate the locking based
real-time transaction protocols we developed and then to fully develop, implement, evaluate
and compare an optimistic concurrency control approach for real-time transactions. We
also intend to improve our time constrained communication protocols, and integrate them
with the Spring kernel and with the scheduling algorithms. In addition, we will develop a
real-time virtual circuit which will be more suitable to hard real-time scheduling than the
time constrained communication protocols developed to date.

REFERENCES

[1] S. Biyabani, "The Integration of Deadlines and Criticalness in Hard Real-Time
Scheduling," Masters Thesis, Univ. of Mass., August 1988.

[2] S. Biyabani, J. Stankovic, K. Ramamritham, "The Integration of Deadlineand Crit-
icalness in Hard Real-Time Scheduling," Proc Real-Time Systems Symposium, Dec.
1988.

[3] S. Cheng, J.A. Stankovic, and K. Ramamritham, "Dynamic Scheduling of Groups of
Tasks with Precedence Constraints in Distributed Hard Real-Time Systems," Proc.
Real-Time Systems Symposium, Dec 1986.

[4] S. Cheng, "Dynamic Scheduling Algorithms for Distributed Hard Real-Time Systems,"
Ph.D. Thesis, University of Massachusetts, May 1987.

[5] K. Ramamritham and J.A. Stankovic, "Dynamic Task Scheduling in Hard Real-Time
Distributed Systems," IEEE Software, pp. 65-75, July 1984.

[61 K. Ramamritham, J.A. Stankovic, and W. Zhao, "Distributed Scheduling of Tasks with
Deadlines and Resource Requirements," submitted to IEEE Trans. on Computers, Oct.
1988.

[7] K. Ramamritham, J. Stankovic, W. Zhao, "Meta-Level Control in Distributed Real-
Time Systems," Int. Conf. on Distributed Computing Systems, Sept. 1987.

[8] K. Ramamritham, "Channel Characteristics in Local Area Hard Real-Time Systems,"
ISDN and Computer Networks, 1987.

[9] P. Shiah, "Real-Time Multiprocessor Scheduling," Masters Thesis, in preparation.

[10] J.A. Stankovic, "Stability and Distributed Scheduling Algorithms," IEEE Trans. on
Software Engineering, Vol SE-11, No. 10, Oct 1985.

[11] J.A. Stankovic, K. Ramamritham, and S. Cheng, "Evaluation of a Flexible Task
Scheduling Algorithm for Distributed Hard Real-Time Systems," Special Issue on Dis-
tributed Computing, IEEE Transactions on Computers, pp. 1130-1143, December 1985.

[12] J.A. Stankovic and L. Sha, "The Principle of Segmentation," Technical Report, 1987.

[13] J.A. Stankovic, "Decentralized Decision Making for Task Allocation in a Ilard Real-
Time System," to appear in IEEE Transactions on Computers.

[14] J.A. Stankovic and K. Ramamritham, "The Design of the Spring Kernel," Proc Real-
Time Systems Symposium, Dec. 1987.

[15] J. A. Stankovic and W. Zhao, "On Real-Time Transactions," A CAI SIGAIOD Record,
1988.

[16] J. A. Stankovic, "Misconceptions of Real-Time Computing: A Serious Problem for
Next Generation Systems," IEEE Computer, October 1988.

[17] J. A. Stankovic and K. Ramamritham, Hard Real-Time Systems, Tutorial Text, IEEE
Press, 1988.

[18] W. Zhao and K. Ramamritham, "Distributed Scheduling Using Bidding and Focussed
Addressing," Proc. Real. Time Systems Symposium, pp. 103-111, Dec 1985.

[19] W. Zhao, "A Heuristic Approach to Scheduling with Resource Requirements in Dis-
tributed Systems," Ph.D. Thesis, Feb 1986.

[20] W. Zhao and K. Ramamritham, "A Virtual-Time CSMA Protocol for Hard Real-Time
Communication," Proc. Real-Time Systems Symposium, Dec 1986.

[21] W. Zhao, K. Ramamritham, and J. A. Stankovic, "Scheduling Tasks with Resource
Requirements in Hiard Real-Time Systems," IEEE Transactions on Software Engineer-
ing, May 1987.

[22] W. Zhao, K. Ramamritham, and J.A. Stankovic, "Preemptive Scheduling under Time
and Resource Constraints," Special Issue on Real-Time Systems, IEEE Transactions
on Computers, Aug 1987.

[23] W. Zhao and K. Ramamritham, "Virtual Time CSMA Protocols for Hard Real-Time
Communication," IEEE Transactions on Software Engineering, 1987.

[24] W. Zhao and K. Ramamritham, "Simple and Integrated leuristic Algorithms for
Scheduling Tasks with Time and Resource Constraints," Journal of Systems and Soft-
ware, 1987.

[25] WV. Zhao, J. Stankovic, K. Ramamritham, "A Multi-Access Window Protocol for
Transmission of Time Constrained Messages," Int. ("onf on DistributEd Computing

Sys9tems, June 1988.

126] WV. Zhao, 3. Stankovic, K. Ramamritham, "A Window Protocol for Transmission of
Time Constrained Messages," submitted to IEEE Transactions on Computers, Dec.
1987.

[27], W. Zhao, and J. Stankovic, "Performance Analysis of FCFS and Improved FCFS
Scheduling Algorithms for Dynamic Real-Time Computer Systems," submitted to
IEEE Transactions on Computers, March 1988.

[28] Zlokapa, G., "A Multiprocessor Architecture for Real-Time Systems," unpublished
memo, University of Massachusetts, May 1985.

00
r"C

w~spircrED

NTiS CRA&I
DTIC TABG

IUronirow'ced 0

Dist ~ o

